郑旭琪
(广东电网有限责任公司揭阳供电局,广东 揭阳 522000)
摘要:随着电网设备规模的不断扩大,设备管理系统应用需求也不断地增长。针对传统人工管理效率低的问题,提出融合语音技术与声纹认证的电力通信设备管理系统。首先,构建面向电力通信设备词汇的语音语料库和声学词表;然后,采用深度神经网络——隐马尔可夫模型(DNN-HMM)识别语音;最后,结合声纹认证技术,对操作人员的身份进行识别。该系统实现了从手动向语音智能交互操作的转变,使设备管理系统更加高效安全。
关键词:智能电网;设备管理系统;语音交互;声纹认证;语音语料库;声学词表;DNN-HMM
中图分类号:TN912.3 文献标志码:A 文章编号:1674-2605(2023)06-0008-06
DOI:10.3969/j.issn.1674-2605.2023.06.008
Power Communication Equipment Management System Integrating Voice Technology and Voiceprint Authentication
ZHENG Xuqi
(Jieyang Power Supply Bureau of Guangdong Power Grid Corporation, Jieyang 522000, China)
Abstract: With the continuous expansion of power grid equipment, the demand for equipment management system applications is also constantly increasing. Aiming at the problem of low efficiency in traditional manual management, a power communication equipment management system integrating voice technology and voiceprint authentication is proposed. Firstly, build a voice corpus and acoustic vocabulary for power communication equipment vocabulary; Then, deep neural network-hidden Markov model (DNN-HMM) is used to recognize voice; Finally, combined with voiceprint authentication technology, the operator's identity is identified. The system has achieved a transition from manual to voice intelligent interactive operations, making the device management system more efficient and secure.
Keywords: smart grid; equipment management system; voice interaction; voiceprint certification; voice corpus; acoustic vocabulary; DNN-HMM