关于| 联系| 地图| 邮箱
首页>>>学术期刊>>>期刊年表>>>2023年论文集(44卷)
2024年论文集(45卷) 2023年论文集(44卷) 2022年论文集(43卷) 2021年总目录(42卷) 2020年总目录(41卷) 2019年总目录(40卷) 2018年总目录(39卷) 2017全年目录(38卷) 2016全年目录(37卷) 2015全年目录(36卷) 2014全年目录(35卷) 2013全年目录(34卷) 2012全年目录(33卷) 2011全年目录(32卷) 2010全年目录(31卷) 2009全年目录(30卷) 2008全年目录(29卷) 2007全年目录(28卷) 2006全年目录(27卷) 2005全年目录(26卷) 2004全年目录(25卷) 2003全年目录(24卷) 2002全年目录(22卷) 2001全年目录(22卷) 2000全年目录(21卷)

20230511基于自适应卷积的心电图心律分类方法

‖  文章供稿:廖桂鑫 甘力
‖  字体: [大] [中] [小]

廖桂鑫 甘力 

(广东工业大学,广东 广州  510006)

摘要:针对网络轻量化后,模型复杂度降低带来的检测性能不足等问题,提出一种基于自适应卷积的心电图(ECG)心律分类方法。首先,采用轻量级的卷积神经网络模型框架构建双分支结构,主分支提取ECG的波形特征,子分支提取ECG样本与正常心律的差异信息;然后,通过自适应卷积的方法,将ECG样本与正常心律的差异信息融入到主分支中,提高模型的检测性能;最后,在公开的数据集上进行实验,F1分数、准确率、召回率分别为93.58%、95.53%和91.70%,相较于未加入ECG样本与正常心律的差异信息的网络有明显提升,验证了该方法的有效性。

关键词:心电图;心律分类;轻量级卷积神经网络;自适应卷积;双分支结构 

中图分类号:TP391           文献标志码:A            文章编号:1674-2605(2023)05-0011-06

DOI:10.3969/j.issn.1674-2605.2023.05.011

ECG Rhythm Classification Method Based on Adaptive Convolution 

LIAO Guixin  GAN Li  

(Guangdong University of Technology, Guangzhou 510006, China) 

Abstract: A heart rhythm classification method for electrocardiogram (ECG) based on adaptive convolution is proposed to address the issues of insufficient detection performance caused by reduced model complexity after network lightweighting. Firstly, a lightweight convolutional neural network model framework is used to construct a dual branch structure. The main branch extracts the waveform features of ECG, while the sub branches extract the difference information between ECG samples and normal heart rhythm; Then, by using adaptive convolution method, the difference information between ECG samples and normal heart rhythm is integrated into the main branch to improve the detection performance of the model; Finally, experiments were conducted on publicly available datasets, and the F1 score, accuracy, and recall rates were 93.58%, 95.53%, and 91.70%, respectively. This showed a significant improvement compared to the network that did not include the difference information between ECG samples and normal heart rhythm, verifying the effectiveness of this method.

Keywords: electrocardiogram; heart rhythm classification; lightweight convolutional networks; adaptive convolution; double branch structure

打印