关于| 联系| 地图| 邮箱
首页>>>学术期刊>>>期刊年表>>>2023年论文集(44卷)
2024年论文集(45卷) 2023年论文集(44卷) 2022年论文集(43卷) 2021年总目录(42卷) 2020年总目录(41卷) 2019年总目录(40卷) 2018年总目录(39卷) 2017全年目录(38卷) 2016全年目录(37卷) 2015全年目录(36卷) 2014全年目录(35卷) 2013全年目录(34卷) 2012全年目录(33卷) 2011全年目录(32卷) 2010全年目录(31卷) 2009全年目录(30卷) 2008全年目录(29卷) 2007全年目录(28卷) 2006全年目录(27卷) 2005全年目录(26卷) 2004全年目录(25卷) 2003全年目录(24卷) 2002全年目录(22卷) 2001全年目录(22卷) 2000全年目录(21卷)

20230301癫痫脑电高频振荡自动检测的研究进展

‖  文章供稿:李向欢 杜玉晓 凌宇
‖  字体: [大] [中] [小]

李向欢杜玉晓凌宇

(广东工业大学自动化学院,广东 广州 510006

摘要:癫痫是大脑神经元突发性异常放电,导致短暂的大脑功能障碍的一种慢性疾病。癫痫脑电信号的高频振荡是一种可靠的癫痫发生生物标志物。为了有效地诊断和治疗癫痫,对癫痫脑电高频振荡进行准确地检测至关重要。癫痫脑电高频振荡自动检测算法先从脑电信号中提取相关特征,再利用机器学习算法来识别分类高频振荡。首先,介绍癫痫脑电高频振荡的定义以及临床研究意义;然后,对癫痫脑电高频振荡的特征提取和特征分类进行总结;最后,阐述癫痫脑电高频振荡自动检测的研究现状和未来的研究方向。

关键词:癫痫;脑电图;高频振荡;特征提取;特征分类

中图分类号:R742.1 文献标志码:A文章编号:1674-2605(2023)03-0001-09

DOI:10.3969/j.issn.1674-2605.2023.03.001

Research Progress in Automatic Detection of Epileptic EEG          High-frequency Oscillations

LI Xianghuan  DU Yuxiao  LING Yu

(School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract:Epilepsy is a chronic disease caused by sudden abnormal discharge of brain neurons, which leads to temporary brain dysfunction. The high-frequency oscillation of epileptic EEG signals is a reliable biomarker for epilepsy occurrence. In order to effectively diagnose and treat epilepsy, accurate detection of high-frequency oscillations in epileptic EEG is crucial. The automatic detection algorithm for high-frequency oscillations in epilepsy EEG first extracts relevant features from EEG signals, and then uses machine learning algorithms to identify and classify high-frequency oscillations. Firstly, introduce the definition and clinical research significance of high-frequency oscillations in epileptic EEG; then, summarize the feature extraction and classification of high-frequency oscillations in epileptic EEG; finally, the current research status and future research directions of automatic detection of high-frequency oscillations in epilepsy EEG are elaborated.

Keywords: epilepsy; EEG; high-frequency oscillations; feature extraction; feature classification 

打印